6ec30db9

Однако сеть обладает специфической топологией,


Однако сеть обладает специфической топологией, затрудняющей ее обучение. Сеть многослойная, что исключает связи «через слой», присутствующие, например, в сети на рис. 2.6, как результат построения нейросети «под задачу».

Применим метод опорных путей, или трассировки, расширяющий использованный выше «схемотехнический» подход. Его можно изобразить схемой рис. 2.1

 

Суть метода  в трассировке соединений, в назначении высоких весов некоторых связей, превращающих нейросеть в законченное функциональное устройство. При такой трассировке обучение производится на эталонах в полном смысле этого слова на вполне определенных (достоверных) ситуациях, например на отсутствии события (0) или на его наступлении (1). После обучения сеть должна выдавать наиболее близкое решение при недостоверной информации, т.е. согласно вероятности наступления того или иного события. Хотя, как показано на примерах, можно выйти и за рамки теории вероятности, не требуя полноты множества событий и условия нормировки, но взвешивая события на основе какихто других принципов.

Итак, для успешной, наглядной и легко рассчитываемой трассировки решим вопрос кардинально: какие веса полагать равными нулю, а какие — единице?

Все прочие возможности, например min



введение порога h = 0,5 и т.д., будут способствовать более плавной работе сети, непрерывности перехода из состояния в состояние.


Содержание раздела