6ec30db9

Мы исследовали слой за слоем,


1. Мы исследовали слой за слоем, постоянно помня о цели — пять комбинаций ситуаций, каждая из которых должна возбудить один из нейронов выходного слоя. Причем решения за этими нейронами пока жестко не закреплены.

2. В каждом слое мы собирали частную комбинацию  терм, который можно использовать в последующем, — из доступных термов предыдущего слоя.

3. Термы, которые пока не используются при конструировании изза их взаимной удаленности, мы запоминали без изменения на анализируемом слое, пытаясь «подтянуть» их в направлении возможного дальнейшего объединения.

4. Мы старались не «тянуть» термы «поперек» сети. В противном случае возникла бы проблема — как избежать пересечений и искажения уже сформированных термов. Все это заставило нас долго не закреплять нейроны выходного слоя за решениями, что в конце концов привело к нарушению естественного порядка следования решений.

 

Для автоматизации трассировки необходимо матричное представление, только и доступное компьютеру.

Матрица следования, отражающая трассировку нейросети, получается на основе рис. 2.12, если отметить элементы, соответствующие «тонким» линиям, нулевыми весами, а элементы, соответствующие «жирным» линиям, — весами, равными единице.

На рис. 2.13 отражен динамический путь возбуждения, приводящий к решению R1. Он строится по алгоритму, изложенному в подразд. 2.5. В данном случае динамические пути возбуждения совпадают со статическими. В общем случае из статического пути возбуждения необходимо исключить нейроны, которым соответствуют нулевые строки матрицы следования.

Аналогично получают динамические пути возбуждения, приводящие к другим решениям.

Поставим теперь задачу дальнейших исследований: как построить все необходимые пути возбуждения так, чтобы они, возможно, пересекались, но только для формирования общих термов? А способна ли выбранная нами «готовая» нейросеть вообще справиться с поставленной задачей или предпочтительнее принцип «нейросеть под задачу»?





Содержание раздела